Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 12(1): 696, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1621270

RESUMEN

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Asunto(s)
Síndrome Torácico Agudo/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , FN-kappa B/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Anticuerpos Neutralizantes/metabolismo , Biomarcadores/metabolismo , COVID-19/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , SARS-CoV-2/patogenicidad , Porcinos
2.
Comb Chem High Throughput Screen ; 25(11): 1805-1808, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1547091

RESUMEN

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) provokes acute inflammation due to extensive replication of the virus in the epithelial cells of the upper and lower respiratory system. The mammalian target of rapamycin (mTOR) is a l signalling protein with critical functions in cell growth, metabolism, and proliferation. It is known for its regulatory functions in protein synthesis and angiogenesis cascades. The structure of mTOR consists of two distinct complexes (mTORC1 and mTORC2) with diverse functions at different levels of the signalling pathway. By activating mRNA translation, the mTORC1 plays a key role in regulating protein synthesis and cellular growth. On the other hand, the functions of mTORC2 are mainly associated with cell proliferation and survival. By using an appropriate inhibitor at the right time, mTOR modulation could provide immunosuppressive opportunities as antirejection regimens in organ transplantation as well as in the treatment of autoimmune diseases and solid tumours. The mTOR also has an important role in the inflammatory process. Inhibitors of mTOR might indeed be promising agents in the treatment of viral infections. They have further been successfully used in patients with severe influenza A/H1N1 pneumonia and acute respiratory failure. The officially accepted mTOR inhibitors that have undergone clinical testing are sirolimus, everolimus, temsirolimus, and tacrolimus. Thus, further studies on mTOR inhibitors for SARS-CoV-2 infection or COVID-19 therapy are well merited.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Everolimus , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Inhibidores mTOR , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , SARS-CoV-2 , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Tacrolimus
3.
Dev Neurosci ; 43(3-4): 143-158, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1472320

RESUMEN

The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.


Asunto(s)
Trastorno del Espectro Autista , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Calidad de Vida , Transducción de Señal
4.
Cell Cycle ; 19(24): 3399-3405, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-972502

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as a specific PKC-alpha and -beta (PKC-α/-ß) inhibitor should be a promising approach to treat people infected with SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Benzofenantridinas/farmacología , Tratamiento Farmacológico de COVID-19 , Eritrocitos/inmunología , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Quinasa C-alfa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Enfermedades Respiratorias/virología , Antivirales/efectos adversos , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , Benzofenantridinas/efectos adversos , Benzofenantridinas/uso terapéutico , COVID-19/inmunología , COVID-19/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Virus ARN/genética , Virus ARN/metabolismo , Enfermedades Respiratorias/enzimología , Enfermedades Respiratorias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA